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Abstraet--A theoretical study is presented of the evaporation of binary mixtures in upward annular flow. Heat 
and mass balances are written and the resulting equations solved to give axial and radial variations of 
concentrations, temperatures and flowrates of ethanol-water mixtures. Mass and heat transfer within the film 
are calculated by an extension of the Dukler-Hewitt method for heat transfer in single-component films. It is 
concluded from the worked examples that, for the mixture considered, the film flowrates and wall temperatures 
are not significantly controlled by mass transfer in either phase and can be calculated by flash vaporization 
methods. 

1. I N T R O D U C T I O N  

The presence of a second component in a fluid undergoing a change of phase adds to the number 
of phenomena which govern that change. Nucleate and film pool boiling of binary mixtures have 
been studied (Van Stralen 1970; Caius & Rice 1972; Stephan & KSrner 1969; Van Stralen et al. 

1972), so too has condensation of binary mixtures (Colburn & Drew 1937; Van Es & Heertjes 
1962). This paper presents a theoretical solution to the problem of evaporation in the annular flow 
regime. Such a flow pattern occurs towards the outlet of many vertical tube boilers. A modified 
version of this analysis would apply to condensation in annular flow. 

The basic problem examined here is that of axial and radial gradients of concentration, and 
hence of saturation temperature, due to the greater volatility of the light boiling component and to 
the resistance to the diffusion of matter within the phases. This resistance causes the 
concentration distribution to be different from that for an equilibrium flash vaporization. In the 
following sections of this paper, heat- and mass-balance equations are presented and a series of 
solutions conducted to determine the controlling resistances in a variety of typical cases. The 
results are compared with those from equilibrium flash calculations. 

Solution of the basic equations requires heat- and mass-transfer coefficients. A new method 
for calculating mass-transfer coefficients in climbing liquid films, based on the Dukler-Hewitt 
(Hewitt 1961) approach for heat and momentum transfer, is described in section 2. The method 
could be adapted for falling films. Heat-transfer coefficients in films can be affected by diffusion 
of matter within them; section 3 describes an extension of the basic Dulder-Hewitt heat-transfer 
solution to such cases. 

Two basic assumptions made in this work are as follows: (1) The presence of liquid droplets 
in the vapour core and of vapour bubbles in the film can be ignored. (2) The liquid film has a 
smooth surface and the effect of waves can be neglected. 

2. HEAT AND MASS B A L A N C E S  

The most far reaching and limiting of the assumptions to be made have been introduced in 
section 1. Several others are made to simplify the solution of the equations, these are as follows: (a) 
The two components are miscible in all proportions. (b) The integral specific latent heat (that 
needed to evaporate completely unit mass of liquid) is linearly related to the concentration. (c) 
Heat gained or lost by the film due to the axial change in saturation temperature is negligible 
compared with the latent heat. (d) Equilibrium prevails at the interface. (e) Steady state 
conditions prevail. (f) Circumferential symmetry exists. (g) In the liquid film axial changes of uz, 
the velocity in the axial direction, can be ignored. (h) Radial and axial gradients of liquid density 
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can be ignored. (i) The concentration profile in the film is fully developed. (j) The rates of axial 
diffusion and conduction are negligible. 

Consider an elemental length of a circular channel carrying liquid and vapour, each 
component being present in each phase. A mass balance over the element gives 

dW, = - d W .  Ill 

where WL and WG are the mass flowrates of liquid and vapour, respectively. A material balance 
on the light component gives 

d( WLx ~,) = - d( W¢Ty '~) [2] 

where x'  and y' are mass fractions of the light boiling component in the liquid and vapour phases 
respectively. Subscript b indicates the bulk, or mixing-cup, value. 

Each side of [2] represents the rate of change of the component flow over the element and can 
be written as 

a W L  t i - d(WLx ~,) = 27rRd,.L, dz - ~ x ,uz, 

d(Woy ~,) = 2zrR,jr.~., dz + ~ y ;dz, 

13a] 

[3b] 

in which R is radius, z is distance in the axial direction, jr.L and L.c are radial diffusive mass 
fluxes in liquid and vapour respectively relative to the mass average radial fluxes, subscript i 
indicates interface values. 

Mass-transfer coefficients k L* and k ~,* in the liquid and vapour phases respectively are defined 

by 

• b P * [ ~  P t 
Jr, L,i ~- a'l. \ .~b-  Xi), [ 4 a ]  

j r , G . i  ~ b t ~ {  ~ t t ,,6 ~y~ yb). [4b] 

The stars on the coefficients indicate that they may differ from those, k '  L and k ~ which would 
be found if the mass average radial fluxes were zero. The differences are due to the influence of 

the net mass fluxes on the concentration profiles. From [1] to [4]: 

dx'b (dWL , , )  , 1 = (x, - x ~) [5a] dz \ dz + 2¢rR~kL WL " 

) 1 
dYbdz -- \(dWL-dz 2~rR,kb* (y'b- y',) W~ . [5b] 

The loss of light component from the film in the length dz is given by [3a]. Since in a binary 
mixture jA = --j~ where A and B refer to light and heavy components respectively, we can write 

for the loss of heavy component 

-27rR, dzkL (x b - x 'i) - (1 - x ~) ~ dz. [6] - d ( W L { 1 - x ; } ) =  '* ' 

From assumption (b) we obtain that the supply of latent heat in the length dz, QLG, is given by 

Q L a  = - -X l  d z + 2 7 r R ~ d z k L  ( b - x i )  hLG,A 

+[-( l -x '~)-d-~dz-2zrR~dzk~*(x 'b-x '~)]hL~.B,  [7] 



EVAPORATION OF BINARY MIXTURES IN UPWARD ANNULAR FLOW 413 

where h~o is specific latent heat. The flux of this heat flow through the interface is 

QLo [81 
qLo - 2¢rR~ dz " 

The heat reaching the interface, equal to that passing through the wall, assumption (c), provides 
the latent heat for the evaporating stream plus the heat removed from the interface by conduction 

and convection. Hence 
qwAw = qL~A~ + qcA~, [9] 

where qw is the heat flux through the wall which is of area Aw • As is the interracial area and qc, 
the heat removed by conduction and convection: 

qc = h $ ( T ~ - T ~ . b ) ,  [101 

h ~ is the heat-transfer coefficient in the vapour and the * indicates that it may differ from that in 
the zero mass-transfer case, T~ is the interracial temperature and Tv.b is the bulk vapour 

temperature. 
Combining [7] to [10] and rearranging: 

d WL _ - 2~rRwqw + 21tRek L*(x 'b - x ~)(hLz,A -- hLo.B ) + 21rR~h $(T~ - To.b) 

dz x~hLo.A + (1 - x')hLo,a [111 

where Rw is the tube radius. 
For a pure coolant [111 reduces to the simple form 

d WL = - 2¢rR,,qw [12] 
dz hL~ ' 

in which, following the arguments of Lacey (1964), we take T~ = TG.b. In common with this simple 
form the equation for mixtures, [11], has as its numerator the heat available for evaporation and 
as its denominator the effective specific latent heat. 

Not all the heat entering through the wall is available for net evaporation of the 
two-component film. This is due to (i) the equal and opposite diffusion of the two components 
through the interface which while not contributing to the net evaporation rate may yet require a 
net heat flow (which may be in either direction) if hLo,A # h~o.B ; this is reflected in the second 
term in the numerator of [11] and (ii) the removal of heat from the interface by conduction and 
convection, reflected in the final term of the numerator of [11]. 

Assumption (b) explains the replacement of hLG in [12] by the linear relationship in the 
denominator of [11]. 

An overall and a component mass balance give respectively 

and 
Wr = WL + Wa, [13] 

W r x ~  = W : ~ ,  + Woy~,, [14] 

where Wr is the total mass flowrate and x k is the mass fraction of light component in the entering 
stream averaged over both phases. 

The interracial equilibrium, assumption (d), is expressed by 

y~ = K ' x ] ,  [151 

where K'  the equilibrium ratio, is a function of temperature, composition and pressure. 
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Differentiation of [14] and insertion of [5a], [5b] and [11] gives 

27rR~(kL*x'b + k'~ *"ybj '~ 
x', - d W  L 

dzz (1 - K ' )  + 2~rR,(kI~* + K 'kb ,* )  

[161 

In order to solve these equations suitable expressmns must be found for the various transfer 
coefficients. 

3. LIQUID-PHASE MASS-TRANSFER COEFFICIENTS 

Many studies have been performed on liquid resistances in interphase mass transfer, mostly 
in stirred tanks or falling liquid films (Whitman 1923; Danckwerts 1951; Jepsen et HI. 1966; King 
1966; Ciborowski & Rychlicki 1971). A number of these studies are concerned with the 
penetration theory of Danckwerts (1951), which cannot be used for the prediction of resistances 
unless the surface renewal factor is known as a function of the hydrodynamic parameters of the 
system. The necessary data are not yet available for the present problem. 

The method of Dukler (1960) for momentum transfer in downward annular flow and its 
extension by Hewitt (1961) for heat transfer in upward annular flow have been examined by 
Collier & Pulling (1962) who found reasonable agreement with experimental results. The method 
derived here is an extension of the Dukler-Hewitt model to encompass the case of mass transfer. 
The different boundary conditions at the wall preclude the derivation of a solution by analogy. 

Noting assumptions (g) and (h) we can assume that the net radial velocity in the liquid is zero, 

i.e. 
na+no  =0 [17] 

where nA + nB are the radial mass average fluxes in the film of the two components relative to 

stationary axes. Hence 
kL* = k~.. 1181 

Assumption (i) indicates that the mass-transfer coefficient in the liquid film is independent of 
axial distance. The validity of this assumption is examined in appendix B in which development 
lengths are calculated for the boundary conditions of constant interface concentration and of 
constant interface mass flux. A constant-diffusion coefficient is assumed which renders the 
solutions strictly valid only for the case of laminar flow. For the two boundary conditions 

dimensionless development lengths given by 

DLZdev z~ov = ~ [19] 

are calculated to be 0.182 and 0.245 respectively. DL is the diffusion coefficient, z the 
downstream distance, ti the mean velocity and at the film thickness. 

Substituting into [19] to calculate Zaov (the true development length) using the laminar- 
diffusion coefficient and ti and at values typical of those examined later in the paper gives 
excessively large development lengths. However, making a conservative assumption and 
introducing a more probable value of the overall (turbulent plus laminar) diffusion coefficient 
gives predicted development lengths of 1.8 and 2.4 cm for the constant x~ and constant j~ cases. The 
corresponding mass transfer Graetz numbers, Gz,, ,  are 2300 and 1750 where 

WL [20] 

The development lengths are small compared with the tube length and hence the 
mass-transfer coefficient can truly be considered to be independent of length. 
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In the following analysis of the mass-transfer coefficient the assumption of a constant 

interracial mass flux has been made. Although the true condition will lie somewhere between the 
two extreme boundary conditions this is permissible in view of the similarity of the asymptotic 
values of the coefficients predicted from the two boundary conditions. Note also that the 
conclusions reached in section 7 of this paper show the resistance to mass transfer in the film to 

be negligible. 
With assumptions (i) and (j) a mass balance on the light component taken over the element 

shown in figure 1 gives 

a"  f" PL-~z JR~, ruzdr + rj,.L = 0, [211 

where pL is the liquid density, and Rw is the tube radius. 
For r = R, (the interracial radius): 

a X '  r e ,  
PL'~z Jew ruz dr + Rj,.L,, = 0. [22] 

Fick's Law is extended to turbulent systems to give 

j,.L pL(DL+ ,aX' = Co) ar ' [23] 

where DL and eo are the molecular and eddy diffusivities, respectively. 
Defining a dimensionless velocity, radial position and concentration 

u + uzlu*,  r + pLu*r C + = p u * ( x ' - x l )  = = , : , [24] 
# L  ]r,L.i 

where u* is the friction velocity and /~L the liquid viscosity, we obtain from [21] to [24] 

/ -  r + 

| r+u +dr + 
R, + JR.+ . d C  + 

= p._~_L (DL + Co) ~ • [25] 
r ÷ in,+ r+u÷dr ÷ pL 

J R  w + 

The distance from the wall a = Rw - r  is in dimensionless form, 

a ÷ = apLu* = Re* - r ÷ . [26] 
pL 

where Re*(= RwpLu */I~L) is a curvature Reynolds number (Hewitt 1961). On substitution of [26] 

Figure 1. E lement  of  film. 
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we obtain from [25] 

+ 

1 - rl/Re* :o" (1 - a+/Re*)u+da + 

1 - a+/Re * f o ' ( l  _ a+/Re,)u+da + 

= { 1 + E . p L ] d C  + 
- @-C~cL p~L / da + '  [271 

in which ScL is the liquid phase Schmidt number and aq (= a~pLu *IlzL) is the dimensionless film 
thickness. As ~/Re*~O, i.e. for thin films in large tubes, [27] gives 

fo ~ u +da + 

W + 
L 

+ 

\ff~-L --~-L ] d a  ' 
[281 

fo 71 where WL +=  u+da ÷=  WL/2rrR,,~L and is the dimensionless film flowrate. Calculation 

continues using [28] since in most practical cases the "flat plate" approximation is permissible. 
Data on eddy diffusivity are sparse. Kalinske & Pien (1944) concluded from open channel 

experiments that ~o ~ eM, the eddy viscosity. It is assumed here that the turbulence structure in 
the film is related to a and T, the shear stress, as for purely single-phase flow. For a + < 20 we use 

the expression of Deissler (1955). Putting this in dimensionless form and substituting in [28] gives 

fo "+ u +da + 

W~ 
- [-~cL+n:u+a+(1-e-"2"+"+)]dC+ 

da + , 
[29] 

where n ~ 0.1. Hewitt (1961) has derived, from a force balance, 

__r = eMpL du + _ 
zw /~L da + - 1 + a+o:/rl, [301 

in which tr3/~ = a,/(~12~L2/pLg) ':3 is a parameter characterising the gradient of shear stress 
through the film. rw is the wall shear stress. Hence in a ÷ < 20 the dimensionless velocity profile 

can be found by substituting Deissler's expression for ~,~ into [30] and solving the resultant 

equation. 
In the region a + > 20 we ignore molecular diffusion since 1/ScL ~ EoOL/tzL. Hewitt (1961) has 

solved [30] using a dimensionless form of the equation of yon Karman (1930), 

z _ XZ(du +/da +)4 
z~ (d2u + / d a  +2)2 , [311 

where X = 0.36, to give the dimensionless velocity gradient 

du + 1 tr3/T/ [321 
da + = X2[(1 + a+tr3/~)-'/2- 11" 

Substituting [30] and [31] into [28] and neglecting I/ScL gives 

fo a dC + 1 o'a/r/ u +da + 
[331 

da + = -2-'X (1 + a+tr3/r/)[(1 + a+cr3ln)'n- 1] WL + 
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For most practical cases ~" is high and cr3/~ ~0 ,  in which case, [32] can be simplified to 

| + + 
u * - u ~ * = - I F l n ( a  la~ ) ,  [34] 

where u~ ÷ is the dimensionless velocity at a t = a,+ = 20 calculated from [30] with Deissler's 
expression for ~M. Substituting [34] into [28] gives 

+ | + + + Io"[., 
da÷ - Xa  ÷ We÷ [351 

Equations [29] and [351 have been solved numerically (Shock 1973) to give the dimensionless 
concentration profile. The boundary conditions are 

(i) at a * = 0  u÷=0  

(ii) at a ÷ = ~  C ÷=0  

The mass-transfer coefficient is evaluated as follows. 
The bulk concentration in the liquid film is defined by 

Io " X U 
I da 

x~, = '  o, [36] 

o uda 

Substitution of [20], [241 and [36] into [4a] gives 

pLU* C+u+da+ 
[37] 

kL fo" u+da+ 

The R. H. S. of [37] is the bulk value of C ÷, i.e. Cb + and is evaluated from the profiles of C ÷ and 
y+ (Shock 1973). 

The Sherwood number, dimensionless mass-transfer coefficient, is defined by 

k La~ 
Sh,. m D L '  [38] 

from which it can be shown that 

ShL - ~IScL 
Cb + • [39] 

Numerical calculations were performed to give ShL at various values of liquid film Reynolds 
number, ReL( ---- 4WL+), and SCL for two values of cr3h/. Results are shown in table 1. As Rex. ~ 0 ,  

ShL is asymptotic to 5. An analytical solution for a laminar film (appendix A) confirms that 
numerically calculated value. 
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Table 1. Values of ShL for various values of Re,., SCL and ~r3/r~ 

{r3/rt = 0 ~r ;It I = 0.5 

125 250 500 1000 200t) Rer'?.. 125 250 500 1000 

10.12 5.740 6.515 7.%9 10.64 15,49 10.24 6.392 7.405 9.279 12.68 1879 
21.12 8.186 11.02 16.18 25.54 42.71 20.56 9.626 13.20 19.62 31.1-7 52 i3 
31.16 11.39 16.86 26.81 45.09 79.03 311.68 14.20 21.36 34.27 57.74 111t39 
41.32 15.42 24,20 40.30 70.15 126.1 40.56 19.77 31.37 ~2.45 91.15 163.1 
50.80 19.76 32.18 55.11 97.% 178.9 52.16 27.5~ 45.50 78.39 139.3 253.5 

100.7 50.66 90.09 164.8 307.6 582.8 102.2 73,84 131.5 239,9 445.2 837.5 
152.1 93.34 171.8 322.5 614.0 1181 153.7 138.2 253.9 474.4 897.1 1713 
200.7 141.2 264.8 503.8 %9.2 1879 2112.7 210.6 393.6 745.1 i424 2743 
250.3 195.6 371.2 712.8 1381 2693 250.9 289.1 546.7 11144 2011 38% 
502.3 514.1 1003 1%7 3875 7657 506.5 760.1 1479 2891 %73 11.170 
759.0 977.8 1923 3797 7519 14,920 7611.2 1237 2433 4799 9486 18.790 

1000 1667 3290 6512 12,920 25,860 10111 1669 3299 6535 12,970 2~,760 
1501 3065 6078 1 2 , 0 8 0  24,030 47,850 1507 2516 4998 9943 19,800 39.450 
2017 4371 8693 17,310 34,510 68,840 2073 4387 8729 17,391~ 34,6511 69,100 
2519 5486 10,930 21,800 43,500 86,840 2547 6709 13.360 26,6111 53,060 105,806 
5032 9978 19,940 39,840 79,640 159,200 5038 22510 44,920 89,660 179,000 357.600 
7506 13,760 27,500 54,990 109 ,900  219,900 7522 40,320 80,530 160 ,90t /  3 2 1 , 5 0 0  642,600 

10,010 17,350 34,680 69,360 138 ,700  2 7 7 , 4 0 0  10,030 59,200 1 1 8 , 3 0 0  236,4011 472,800 945,30t) 
15,010 24,140 48,270 %,530 193 ,100  3 8 6 , 1 0 0  15,060 99,150 1 9 8 , 2 0 0  3%200 7 9 2 , 2 0 0  1,584,(RR1 
20,010 30,650 61,290 t22,600 245,100 4 9 0 , 3 0 0  2 0 , 0 7 0  141 ,700  2 8 3 , 3 0 0  5 6 6 , 5 0 0  1,133,000 2,265,000 
25,040 37,010 74,010 148.000 2%,000 5 9 2 , 0 0 0  2 5 , 0 9 0  186 ,900  3 7 3 , 6 0 0  747.10t l  1,494,000 2,988,000 
50,030 67,290 134,600 269,200 538 ,300  1,077,000 50,070 439,000 8 7 7 , 9 0 0  1,756,1R~0 3,511,000 7,022,1~) 
75,040 %,520 193,000 386,100 772,200 1,544,000 75,120 724 ,600  1,449,000 2,898,000 5,7%,000 11,590.000 

I00,000 125,300 250,500 501,100 1,002,000 2,004,1100 100,I00 1,032,000 2,065,0t10 4,130,000 8,260,000 16,520.011tl 

4. L I Q U I D  P H A S E  H E A T - T R A N S F E R  C O E F F I C I E N T S  

The wall temperature of a tube carrying an evaporating film of a binary mixture may differ 
from that of  one carrying a pure fluid of the same physical properties under the same heat flux 
and hydrodynamic conditions. One reason for this difference lies in the interracial condition 
being different from that in the equilibrium flash vaporization, zero mass-transfer resistance, 
case. The second reason lies in the different temperature drop through the film due to thermal 
energy transport by mass transfer. An energy balance for a turbulent film on a surface of large 
radius and where assumptions (c) and (j) and [19] hold gives 

. d T ff-IAjr,A (-IBjL,O 
q = qw =(KL + e L p L C L ) - d - d a + ~ +  MS ' [40] 

where q is the heat flux, KL is thermal conductivity of  the liquid and cL is its specific heat capacity. 
Eu is the eddy thermal diffusivity, T is temperature, H and M are respectively partial molar 
enthalpy and molar mass. jL is mass flux in the liquid normal to the wall. We note that jL.a = - jL.~ 
and approximate 

- ~  = CL(T - Trof,a), [41] 

where Trer.a is the reference temperature datum for enthalpy. Hence 

d T +  , , 
qw = - - ( K L  "]- F.HpLCL)"~a (CL,A -- C L a ) j L . * ( T  - Y r e f . a ) .  [42 ]  

With the fiat plate approximation, already made in [40], [21] becomes 

dx ' fo" jL,A = -- PL "-~ Uz da  . [43] 

Substituting [26] and [43] into [41] and choosing Tr,f.a, which can take any value, to be T~ we 
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obtain 

where 

and 

[ 1 , EHpL~ d T  + ~'°+ 
- - ~  - r - ~ -  u+da+ = 0 ,  \PrL  /~L ) da 1 + QT + Jo 

[44] 

T + = CL.,,pL.W u*(Tw -- T ) ,  [45] 
qw 

CL,A- CL,B /ZL c~X' 
O =  p u* az' [46] 

where CL,M is the mixture specific heat capacity. Q is a dimensionless constant which 
characterises the effects of interdiffusion of the two components on heat transfer; it can be 
positive or negative. An improvement in heat transfer will occur with positive Q. 

Equation [44] was solved numerically to give the Nusselt number 

qwa, = rIPrL [47] 
NuL = (Tw - Ti)~L T~ + ' 

for various values of ReL, o,3lrl, PrL and Q. Table 2 shows some of the results. It can be seen that 
for low o,3/~, if Q is sufficiently large and negative, NUL can fall with increasing ReL. This is 
however somewhat academic since it is unlikely that in practice Q would be greater than 10 -6. 

Since Tw, the reference temperature in [41], is not constant along the tube, the calculation of 
length mean averages, from local values given by the above methods, is complex. 

5. V A P O U R - P H A S E  M A S S - T R A N S F E R  C O E F F I C I E N T S  

The Chilton-Colburn analogy is used for vapour-phase mass-transfer and gives 

= ko SCO.67 fo 
jo p6Ua, b = ~-, [48] 

where jD is the j-factor for mass transfer, ko the mass-transfer coefficient based on molar flux 
and mole fraction driving force, po and Sco are the vapour density and Schmidt numbers 
respectively, Ua,b is the bulk average axial vapour velocity relative to the interface and fo is the 
friction factor given by 

fo = 0.079 ReG -°'z~ , [49] 

where Re,~ is evaluated using U6.b, and a diameter equal to that of the vapour core. 
Now k~ is the limiting molar diffusion rate as the net molar flux tends to zero. It can be shown 

(Shock 1973) that kb,  the limiting mass-diffusion rate as the net mass flux tends to zero, is 

k b = k o M  AMB 
y~,MB + (1 - y'b)MA " [50] 

Bird et al. (1960) show the derivation of an equation for 0 = k~//~ based on a film theory 
model. Their equations can be reworked with concentrations on a mass basis to give 

kb* ~b 
0 = k b  - e-~-= 1 ' [51] 
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Table 2. Values of Nu~ for various values of Re1, PrL, Q and ~r3/~l 

cr 3/r/=0 
Pr~ = 1 Pr~ = 5 

10 4 I0 ~ 0 -I0 " -10 ~ iO ' 10 " 0 • -10 " - I0  

10.12 1.000 1.000 1.000 1.000 1.000 1.003 1.003 1.002 1,002 1.002 
21.12 1.003 1.001 1.002 1.002 1.002 1.013 1.011 1.011 1.011 1,008 
31.16 1.005 1.005 1.005 1.005 1.004 t.026 1.022 1.022 1.022 1.018 
41.32 1.009 1.008 1.008 1.008 1.007 1.043 1.038 1.038 1.038 !.032 
50.80 1.013 1.012 1.012 1.012 1.010 1.062 1.054 1.054 1.054 1.046 

100.7 1.044 1.040 1.040 1.040 1.035 1.185 1.165 1.165 1.164 1.145 
152.1 1.086 1.078 1.078 1.078 1.070 1.325 1.291 1.291 1.290 i.257 
200.7 1.131 1.119 1.119 1.119 1.107 1.457 1.409 1.409 1.408 1.362 
250.3 1.179 1.162 1.162 1.162 1.146 1.589 1.526 1.525 1.525 1.464 
502.3 1.428 1.383 1.383 1.383 1.339 2.206 2.058 2.056 2.055 i.916 
759.0 1.701 1.625 1.624 1.624 1.551 2.793 2.556 2.554 2.552 2.334 

1000 1.993 1.887 1.886 1.884 1.783 3.359 3.044 3.041 3.037 2.750 
1501 2.549 2.364 2.362 2.360 2.187 4.457 3.951 3.947 3.942 3.491 
2017 3.115 2.824 2.822 2.819 2.553 5.601 4.847 4.840 4.833 4.176 
2519 3.663 3.247 3.243 3.239 2.867 6.728 5.681 5.671 5.662 4.772 
5032 6.522 5.131 5.119 5.106 4.000 12.81 9.515 9.486 9.457 7.001 
7506 9.722 6.778 6.753 6.728 4.649 19.89 12.97 12.92 12.86 8.336 

10,010 13.51 8.328 8.287 8.245 5.003 28.53 16.29 16.20 16.10 9.103 
15,010 23.25 11.20 11.12 11.03 5.138 51.60 22.56 22.37 22.18 9.502 
20,010 36.77 13.89 13.75 13.61 4.841 85.17 28.53 28,21 27.89 9.030 
25,040 55.40 16.46 16.26 16.05 4.343 133.5 34.33 33.85 33.38 8.139 
50,030 280.8 28.29 27.56 26.85 1.822 827.5 61.57 59.88 58.22 3.441t 
75,040 893.2 39.29 37.79 36.33 0.6119 3266 87.52 83.97 80.50 1.156 

100,000 1983 49.9l 47.39 44.97 O. 1874 8591 112.9 106.9 101, ! 0.3541 

cr '/7 :~ 0.5 

10.24 1.000 1.000 1.000 1.000 1.000 1.004 1.003 1.003 1.003 1.002 
20.56 1.003 1.002 1.002 1.002 1.002 1.013 t.012 1.012 1.1112 1.010 
30.68 1.006 1.005 1.005 1.005 1.005 1.028 1.025 1.025 1.025 1.022 
40.56 1.010 1.009 1.009 1.009 1.008 1.046 1.042 1,042 1.042 1,038 
52,16 1.0t6 1.014 1.014 1.014 1.013 1.071 1.065 1.065 1,065 1./1611 

102.2 1.051 1,048 1.048 1.048 1.045 1.197 1.184 1.184 1.184 1,171 
153.7 1.096 1.091 1.091 1.091 1.086 1,330 1.310 1.310 1.310 1.291! 
202.7 1.142 1.135 1.135 1.135 1.127 1,449 1.422 1.422 1.422 1.395 
250.9 1.188 1.178 1.178 1.178 1.169 1.559 1.525 1525 1.525 !.492 
506.5 1.419 1.396 1.396 1.396 1.373 2.061 1.991 1.990 1.989 1.921 
760.2 1,625 1.586 1.586 1.585 1.547 2.481 2.371 2.370 2.369 2,263 

1001 1.802 1.746 1.746 1.745 1.691 2.840 2.689 2.688 2.686 2.543 
1507 2.141 2.045 2.044 2.043 1.951 3.521 3.276 3274 3.271 3.1143 
2073 2.525 2.393 2.393 2.391 2.266 4.219 3.891 3.888 3.885 L~82 
2547 2.852 2.696 2.694 2.693 2.544 4.787 4.401 4.397 4.393 4.038 
5038 4.513 4.197 4.194 4.191 3.896 7.682 6.945 6.938 6.931 6.263 
7522 6.100 5.591 5.587 5.582 5.114 10.46 9.316 9.305 9294 8.274 

10,030 7.663 6.932 6.925 6.918 6.254 13.20 II .60 11.58 1157 10.16 
15,060 10.70 9.457 9.445 9.433 8.330 18.55 15.91 15.89 15.86 13.60 
20,070 13.66 11.83 11.81 11.79 10.20 23.77 19.96 19.93 19.89 16.70 
25,090 16.59 14.111 14.07 14.05 11.93 28.94 23.85 23.80 23.76 19.57 

~ . . . .  19.06 41.42 41.3l 50,070 30.89 24.34 ,4.,8 ")4 9') 54.25 41.19 31.42 
75,120 45.21 33.53 33.43 33.32 24.68 79.66 57.21 57.03 56.83 40.78 

10(I,100 59.69 42.03 41.87 41.73 29.34 105.4 71.84 71.57 ,1., 48.52 

where 
1 dWL 

05 - 2~rR,k~ d Z  ' 

hence k b* can be evaluated from [48] to [52]. 

6. VAPOUR-PHASE HEAT-TRANSFER C O E F F I C I E N T S  

Again we use the Chilton-Colburn analogy 

jH - h ~  p r  O.~ = f6  
pvCvUo.b 2 ' 

[521 

[531 
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where ]r~ is the ]-factor for heat transfer, ha is the heat-transfer coeflicientin the absence of mass 

transfer, ca and Pro are the vapour specific heat capacity and Prandtl number respectively. To 
calculate h~ we again use the method derived by Bird et al. (1960) which gives 

where 

= h._~ = th [54] 
0 ha e* - 1 ' 

n A ~ ic~ A + nB,G.iCa.B [55] 
~b . . . . . .  he 

and nA.~.~, the total mass flux of component A in the vapour at the interface, is 

nA.G.i = (nA.a.i + no.a.i)Z'e = G,Z'e, [56] 

Z' is the mass fraction of light component in the evaporating stream, i.e. the evaporation rate of 
that component divided by the total evaporation rate. G, the total evaporation rate, is given by 

- (1/2 ~rR, )(d WL/dz  ). 

We can write 

qL.a = Gez'~hLa.A + Ge(1 - zghL~.B, [57] 

hence from [7] 

,dWL 1 k '*i . . . .  x [58] 
G , z ' =  - x ,  d---Z 21rR----]~ t- L ~,,b--,~,, ,  

t ~  t t 

z" = x ~ -~ k L (X b-- X ,) [59] 
G, 

This equation is solved for z '  and hence nA,o., and ha.o., can be found from [56] and we now have 
all the terms necessary to evaluate h~. 

It can be noted from [58] and [59] that at high G,, i.e. at high evaporation rates, x~ = xL and no 
rectification occurs [(dx 'ddz) = 0]. As G, decreases z', becomes greater than x~ and rectification 
occurs since x ~, > x ~. Each phase is assumed to be of uniform concentration at the channel inlet. 
Since at zero G, no mass transfer occurs and x~, = x~ (see [58]) then x~-x~ must go through a 
maximum as G, decreases from infinity to zero. 

For evaluation of the vapour-phase heat-transfer in [11] we also need T, and Ta, b. Since 
equilibrium is being assumed at the interface Ti can be calculated from the pressure and local 
concentration. It can be shown (Shock 1973) that, if the dew point line is straight between Yb 
(bulk vapour mole fraction of light component) at inlet and xr (mole fraction averaged over 
entering fluid stream) and furthermore that the Lewis number (PrG/Sco)  is unity, the bulk vapour 
stream will remain at saturation temperature or tend towards it, depending on the state of the 
stream entering the channel. If these conditions are fulfilled Ta.b is the dew point corresponding 
to yb. It is intended in further work to examine the consequences if these conditions are not 
fulfilled as well as the consequences of heat absorbtion or release by the liquid film. 

7. CASE STUDIES 

This section describes the calculation of conditions in a tube and determination of the 
controlling resistances in a number of cases using the methods described in the previous sections. 
A computer routine was written (Shock 1973) to solve the equations and also to calculate the 
conditions expected from an equilibrium flash vaporization. Comparison of the results shows in 
which, if either, phase there is a resistance to mass or heat transfer which controls the important 
variables and causes them to differ significantly from those in the equilibrium flash, zero 
resistance, case. These important variables were taken to be the flowrates of the two phases and 
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the temperature at the wall; this is convenient for the constant heat flux case examined here. The 

mixture studied was ethanol-water. 

Solution of the equations is carried out in steps of length 0.01 m, the tube radii used were 0.01 

and 0.0165 m. In most of the calculations the pressure was assumed not to vary along the channel, 

hence confining the problem to heat flux induced gradients and ignoring flashing. Furthermore 

this minimises the error due to assumption (c). 

We can decide whether a particular resistance controls an important design parameter by 

examining whether its absence has any significant effect on that parameter. The runs to be 

described consider different heat fluxes, tube radii, inlet concentrations and qualities in order to 

see whether changes in these conditions bring changes in any controlling resistances. 

For each set of conditions the calculations were performed four times. In these four modes 

the mass-transfer coefficients were calculated as already described, and, as shown in table 3, 

multiplied by a factor F, set equal to 5. 
It is shown later that the fivefold reduction in the mass-transfer resistance is equivalent to 

removal of that resistance. The fourth mode, with the removal of both resistances, approximates 

to equilibrium flash vaporization with no intraphase concentration gradients. 

The table below sunlmarises the conditions used in the runs to be described. It will be seen that 

in the second and subsequent runs only one condition is different from the basic set used in the 

first run. 
To find a value of F which effectively reduces the resistances to zero a series of calculations 

was performed with different values of F and Mode = 4, the conditions were those of Run 1. 

Figure 2 gives a plot of x', against F for three values of z. Also shown are the values of x'  for an 

equilibrium flash vaporization. 
As the resistance is decreased x', tends to an asymptote. The flash method gives values which 

are close to the asymptote. Due to the stepwise nature of the calculations the component material 
balance [14] can be disobeyed as F increases. This was found to be unacceptably so for F >> 5. 

This value however gives results sufficiently close to the asymptotes. 

Figures 3, 4 and 5 show the axial variations of flowrate, concentrations and temperatures for 

Run 1 with Mode = 1. Figure 3 shows that d W L / d z  decreases as z increases in the lower part of 

the tube and then becomes constant. The second and third terms in the numerator of [11] vary 

Table 3. Mass-transfer coefficients 
used in calculations 

Mode Phase 
Liquid Vapour 

q kT k~ 
2 Fxk*, k,*~ 
3 k~ F × k~ 
4 F×k*  F x k *  

Table 4. Summary of conditions in calculations 

W; (inlet)/ 
Run WT/(kgs)" x~ (inlet) kgs ' q/(Wm) ' R~.(m) Remarks 

1 0.1 0.1 0.095 2x 106 0.0165 
2 0.1 0.1 0.095 2 x 10 ~ 0.0165 Allows 

pressure 
to drop 

3 0.1 0.1 0.095 2x 10' 0.0165 change 
of q 

4 0.I 0.1 0.095 2x 10" 0.010 change 
of R~ 

5 0.1 0.1 0.075 2 × 10" 0.0165 change 
of inlet 
quality 
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Figure 3. Axial variation of film flowrate for Run 1. 
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with z but are shown later to be negligible everywhere compared with the, constant, first term. 
The denominator o f [ l l ]  varies with x' and figure 4 shows that (dx~/dz) is greatest near the tube 
inlet. 

Throughout the tube the preferential stripping from the film of the light component causes x 
to be greater than x ~. The value of x ~,- x ~ is greatest near the inlet (it is zero at z = 0) although at 
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z =0.05 m it is only 3.4× 10 -3. Perhaps unexpectedly we find that y~,> y'i. Thus although the 
mass average radial velocity is directed away from the interface the light component is diffusing 
counter to that flow, towards the interface. The radial concentration gradient in the vapour also at 
first increases with z 'but then decreases. 

Table 5 shows some of the subsidiary parameters associated with heat and mass transfer in 
this run and with Mode = 1. 

The table shows that the effect of the mass transfer is to reduce the heat-transfer coefficient 
by at least three orders of magnitude. The mass-transfer coefficient by at least three orders of 
magnitude. The mass-transfer coefficient is reduced by 34% at z = 0.1 m, a factor which falls to 
17% by the end of the length examined. 

From table 2 it can be seen that the values of Q are small enough not to influence the 
temperature drop across the film. From the methods described in section 4 the temperature 
difference across the film has been calculated and is also shown in table 5. The wall temperatures 
are found by adding these values to T;. The temperature drops are perhaps higher than occur in 
typical reboilers because the evaporation rate is somewhat higher, at the high wall superheats 
predicted it is likely that the nucleate boiling neglected here would occur. 

The terms inthe numerator of [11] were evaluated. The term - 2 z r R w q w  = -2.07 × 105 Wm-'. 

The others are listed in table 6 where 

A = 2"n'R,k L (x  ~ - X'~)(hL~,A -- hLc.B ), [60] 

B = 27rR~h~T~ - T o . b ) .  [61] 

The term A is always at least one order of magnitude less that -2~'Rwq~, ; the effect, discussed 
in section 2, is in a direction aiding evaporation. Term B increases along the tube but is always 
negligible compared with the other two terms in the numerator of [11]. 

Considering now the same run in the other calculation modes it is found that WL is altered by 
no more than 0.7% by the removal of the resistance in either phase. However the plots of x~ and 
T,, figures 6 and 7, do illustrate some effects. Removal of the liquid phase resistance, Mode = 2, 

Table 5. Heat- and Mass-transfer parameters 

k~;* h~ (T~,- T~) 
z(m) k~, hc; z'~ Q × 108 °C 

0.I 0.653 2.22× 10 _9 0.05376 17,1 81.2 
0.2 0.750 1.56× 10 ~ 0.03019 5.99 84.9 
0.3 0.789 3.62× 10 -4 0.02118 2.65 84.2 
0.4 0.811 1.79× 10 _3 0.01685 1.53 84.0 
0.5 0.826 4.89× 10 _3 0.01114 1.04 82.4 
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Table 6. Terms  in (11) 

AIW BIW 
z(m) (m-') (m -1) 

0.1 - 4 . 2 x  104 1 .2x  10 ,o 

0.2 - 1.4 x 104 7.2 x 10 -7 
0.3 - 0.49 x 104 2.0 x 10 -s  
0.4 - 0.22 x 104 1.5 x 10 -4 
0.5 - 0 . 1 2  x 104 4 . 2 x  10 " 
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has little effect on x~ and the corresponding T~. Hence there is little effect on the wall 
temperature. If the vapour phase resistance is removed, Mode = 3, x~ changes at all z. The 
maximum increase occurs at z = 0.2 m and causes T~ there to decrease by 0.96°C; due to the 
small (2, Tw will decrease similarly. Comparison of the Mode = 4 case with the latter shows again 
that removal of the liquid phase resistance has little effect on the axial profiles of x~ and T~. The 
graphs also show results from equilibrium flash vaporization calculations which differ little from 
those with Mode = 4. 

At z = 0.2 m, where the temperature drop through the film is 84.9"C, a change of 0.96°C in T~ 
and thus Tw shows that, although in absolute terms, the vapour phase resistance is controlling T, 
its effect is not significant compared with errors in calculating film temperature drops which 
hence control wall temperatures. 
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It can also be seen in figures 6 and 7 that it is the vapour phase resistance which causes the 
temperature and concentration profiles to differ from those in the equilibrium flash vaporization 
case. 

The driving force for setting up the concentration gradients is given by y ~ - x ~, where y ~; is the 
mass fraction in the vapour in equilibrium with xg. At the feed concentration x~= 0.1 we are 

examining the region where this difference is, for ethanol-water, a maximum and the bubble point 

is most sensitive to concentration. Thus these conditions should show any effects of controlling 
resistances to their greatest extent. 

Run 2 was performed with the same conditions as in Run 1 but the pressure was allowed to 
drop. The total calculated pressure drop over the 0.5 m was 9 x 103 Nm -2. Comparison between 

this and the previous run shows the same WL in all values of Mode. Similarly there is little 
difference in the axial or radial variations of concentrations. Figure 8 shows the axial profiles of 

7",. The axial variation of saturation temperature T~,, is given by 

dTsat [OTsat~ dx' (OTsat~ dP 
dz - [--ffJ-;-x' )p ~ + \--~--}~, dz"  [62] 

In Run 1 (dP/dz) is set to 0, hence 7", follows the first term on the R.H.S. of [62] and increases 
with z. In Run 2 we have, towards the end of the tube, 

\ OP ]~ dz \ Ox' ]pdz 

hence T, decreases with increasing z. The temperatures are still most sensitive to the vapour 
phase resistance. In succeeding runs (dP/dz)--O. 

The results from Runs 3-5 are shown in figures 9-11 respectively. 
As the heat flux is reduced (Run 3) so is the tendency to set up concentration gradients. The 

film temperature drops are now -4°C but the differences in Ti caused by the mass-transfer 

resistances are so small that they are still negligible compared with errors in calculating film 

temperature drops. 
In Runs 4 and 5 control again lies in the vapour-phase mass-transfer resistance but the 

greatest differences in interfacial temperatures due thereto were respectively 0.5 and 1.1°C. 

Hence we can conclude that for the mixture ethanol-water at 1 atm. the concentration and 

temperature profiles are not significantly affected by the resistance to mass transfer and can be 

calculated by the methods applicable to flash vaporization processes. Contrast nucleate boiling of 
that mixture which is significantly affected by liquid phase resistance to mass transfer (Stephan & 

K6rner 1%9). 
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Figure 8. Axial variation of interface temperature for Run 2, effect of Mode. 
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Figure 9. Axial variation of interface temperature for Run 3, effect of Mode. 

Figure 10. Axial variation of interface temperature for Run 4, effect of Mode. 

98 r 

Figure 11. Axial variation of interface temperature for Run 5, effect of Mode. 
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It is, however, possible that such conclusions would not apply to mixtures with higher boiling 
ranges where the temperature differences in the various modes of calculation are potentially 
larger. Heat-transfer coefficients in condensation are known to be significantly affected by the 
presence of inert gases. Further work is aimed at the study of such cases and comparison with 
experimental results. 

8. CONCLUSIONS 

Generalized equations have been presented for the variations of flowrates and concentrations 
in vertical round tubes with upward flowing evaporating binary mixtures. It is assumed that all the 
liquid flows in an annular film dragged up the wall by shear stress exerted by the gas core. Mass- 
and heat-transfer coefficients in the liquid film can be calculated by the new methods presented. 
The model of the liquid film assumes a smooth film profile. 

The equations have been solved for an ethanol-water mixture, with a boiling range of 20°C. In 
all the cases examined any significant difference in the concentration profiles from the equilibrium 
flash vaporization case appears to be due to the resistance to mass transfer in the vapour phase. 
Differences in wall temperatures are, however, small compared with those due to errors in 
calculating the temperature drop across the film. Such conclusions may not apply to mixtures with 

higher boiling ranges. 
Heat transfer through the film is not significantly affected by the mass transfer occurring 

within it, but the convective heat-transfer coefficient within the vapour is very much reduced by 
the mass transfer through the boundary layer. The mass-transfer coefficient is similarly reduced 
although to a lesser degree. 
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A P P E N D I X  A 

Mass transfer in a laminar liquid film 
The Sherwood number for a purely laminar film can be derived analytically as follows. 
For most cases of climing film flow the shear stress is high and can be considered constant 

across the film, i.e. cr3/7/= 0. 
Thus, for that case only, 

du~ [A1] ~" =/ZL da ' 

' rwa  
u,  = - - .  [ A 2 ]  

MF VOL. 2 NO. 4---E 
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F the volumetric flowrate per unit wetted perimeter, is given by 

2 
F = rw m [A3] 

/x~. 2 ' 

where m is the film thickness• 
In the case where the fiat plate approximation is permissible [21] and [22] become 

Ox' r a 
pLTz jo uzda + j  =0 [A4] 

and 

where j is given by 

We can also write 

From [A2] to [A7] we obtain 

ClX ~ ~m 
p L - -  da + i., = O, OZ Jo Us [A51 

- D O x '  j - - pL L~a.  [A61 

~ "' uzda = F. [A7] 

• 2 

- J , a  O x '  
m2 = pLDL Oa " [A81 

On integration and rearrangement this gives 

X' = X ~ - -  

From [36] and [A7] we obtain 

• 3 
- lia 

3 m  2pLDL " 

Io " x'  u, da 

X ~ =  • 
F 

[A91 

[A10I 

Substituting [A2], [A3] and [A9] into [A10] and integrating: 

x ;  = x "  2jim 
15pLDL " 

If [A8] is written for the interface and rearranged: 

x'~= x "  jim 
3pLDL ' 

From the definition of the mass-transfer coefficient 

jt = k ;~(x'b- x',), 

results 

and from the definition of Sh~. 

k [ = 5pLDL, 
m 

[All] 

[AI21 

[AI3I 

[Al4l 

Sh,. = 5. [AI5I 
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APPENDIX B 

This appendix outlines the calculation of development lengths for mass transfer in liquid 
films. The method is described elsewhere in greater detail (Shock 1975). 

The equation of continuity for a fiat film of constant density and fully developed velocity 
profile with negligible axial diffusion can be written 

0X'  ~ 02X ' 
u-~- = uL aa 2 . [B1] 

In upward annular flow, with shear stress constant across the film, the velocity profile can be 
expressed by 

2Qa 
u = [ 8 2 ]  a i  2 , 

where Q is the flowrate per unit wetted perimeter. 
The following dimensionless variables are introduced 

U = u / a ,  [B3] 

A = a /a , ,  [84] 

Z ~  - 2 DLZ /UaL . [B5] 

For the case of constant interfacial mass flux a dimensionless concentration is defined by 

pLDL (X' -- X ~) 
Oj = j,a, ' [861 

where x ~ is the uniform concentration at Z = 0. For constant interface concentration we define 

x ' - x ~  
0x, = x; - x-----~o ' [871 

where x~ is the concentration at the interface at Z > 0. 
Introducing [B2] to [B6] into [B1]: 

UaOj_ #20j 
OZ OA 2, [B8] 

and a similar equation with 0x, in place of 0j is produced for the constant interface concentration 
case. 

The boundary conditions for the constant j, case are 

oj=O at Z = 0 ,  

°°J=O aA at A = 0 

tgOJ=-I at A =1 
3A 
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and for the constant xi case they are 

0~,=1 at Z = O ,  

0~, = 0 at A = I ,  

--=00~' 0 at A = O  
OA 

Equations [B8] are solved numerically to give the axial and radial variations of 0r and 0x~ 
Using the definition of the Sherwood number together with Fick's Law it can be shown that 

1 
Shj - --vj",--'0j.b - [B91 

for the constant j, case (where 0j, b is the bulk value of the dimensionless concentrations and 0j., is 

its interface value). 
Similarly it can be shown that 

Shx,- (OOx,/OA)a=, [B10I 
Ox',b 

for the constant x'i case. 
Calculated values of Sh are shown plotted against Z in figure 12. The asymptotic values of the 

Sherwood number for the constant x, and j, cases are 3.93 and 5.0 respectively. The appropriate 
dimensionless development lengths are 0.182 and 0.245. These are the points at which the 

Sherwood number is within 1% of its asymptotic value. 
It should be noted that this analysis is for purely laminar flow (in the solution of the equations 

the value of DL is taken to be constant across the film). 
A typical set of inlet parameters in the problems considered in the main text of this paper is 

Rw = 0.0165 m,  

ai = 3 x 10 -4 m, 

F =9 .2x  10-4m2s 1, 

where F is the volumetric flowrate per unit wetted perimeter. 

Equation [B4] can be transformed to give 

ZFa, 
z = [Bll] 

DL 

and the actual development lengths for the cases of constant x; and jL become 50.2 and 67.5 m. 
Thus if these films were to be in laminar flow the assumption of constant mass-transfer coefficient 

would be untenable. 
However, the values of a, + are approximately 75 and thus a large degree of turbulent mixing 

would thus be expected. The total (turbulent plus laminar) ditfusivity would no longer be constant 
across the film and the analysis presented in this section would not be valid. 

We can, however, make some estimate of the likely order of magnitude of the development 

length by the following reasoning. 
In his analysis Hewitt assumes the Deissler (1955) relationship for the turbulent viscosity to 

hold in the region 0 < a ~ < 30. It is assumed here that the turbulent diffusivity is equal to the 
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turbulent viscosity at any a + (see Shock 1973). Thus at a + = 30 (at which point u ÷ = 13.3) the 

turbulent ditfusivity is given by 

DL' = 0.0lieu+a+[1 - exp (-0.01 u+a+)] = 2.6 x 10 -6 m 2 s -1. [B12] 

Assuming that this value might hold over the entire film we find from [Bll]  that the 

devegpment lengths are 2.4 cm and 1.8 cm for the constant ji and constant x ~ cases respectively. 
In the region between a ÷ = 30 and the interface the turbulent diifusivity will be considerably 
greater than 2.6 x 10 -6 m2s -1. Even though the analysis does not hold for a variable diffusivity it 

can be argued that the development lengths will thus be no greater than 2.0 cm. Hence in tubes of 

length greater than about 20 cm the assumption of a fully developed concentration profile will 
cause little error. 


